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Abstract

Objective: Early identification of cognitive impairment in neurodegenerative

diseases like Alzheimer’s disease (AD) is crucial. Neurofilament, a potential bio-

marker for neurological disorders, has gained attention. Our study aims to

investigate the relationship between serum neurofilament light (sNfL) levels and

cognitive function in elderly individuals in the United States. Methods: This

cross-sectional study analyzed data from participants aged 60 and above in the

National Health and Nutrition Examination Survey (2013–2014). We collected

sNfL levels, cognitive function tests, sociodemographic characteristics, comor-

bidities, and other variables. Weighted multiple linear regression models exam-

ined the relationship between ln(sNfL) and cognitive scores. Restricted cubic

spline (RCS) visualization explored nonlinear relationships. The stratified analy-

sis examined subgroups’ ln(sNfL) and cognitive function association. Results:

The study included 446 participants (47.73% male). Participants with ln(sNfL)

levels between 2.58 and 2.81 pg/mL (second quintile) performed relatively well

in cognitive tests. After adjusting for multiple factors, ln(sNfL) levels were nega-

tively correlated with cognitive function, with adjusted b (95% CI) as follows:

immediate recall test (IRT): �0.763 (�1.301 to �0.224), delayed recall test

(DRT): �0.308 (�0.576 to �0.04), animal fluency test (AFT): �1.616 (�2.639

to �0.594), and digit symbol substitution test (DSST): �2.790 (�4.369 to

�1.21). RCS curves showed nonlinear relationships between ln(sNfL) and DRT,

AFT, with inflection points around 2.7 pg/mL. The stratified analysis revealed a

negative correlation between ln(sNfL) and cognition in specific subgroups with

distinct features, with an interaction between diabetes and ln(sNfL). Interpreta-

tion: Higher sNfL levels are associated with poorer cognitive function in the

elderly population of the United States. sNfL shows promise as a potential bio-

marker for early identification of cognitive decline.

Introduction

It is well-known that aging is a growing problem in the

United States.1 Aging is closely associated with cognitive

decline,2,3 which is the primary manifestation of demen-

tia, especially Alzheimer’s disease (AD).4 From a mechan-

ical perspective, aging leads to cognitive decline through

multiple pathways, including neuronal dysfunction,

decreased neural regeneration capacity, neuroinflamma-

tion within the brain, and alterations in the blood–brain
barrier.5 Furthermore, previous research has also con-

firmed that age-related cognitive decline is typical among

older adult population.6,7 Moreover, dementia has

emerged as a significant health and life threat facing

older adults in the United States,8 bringing severe medi-

cal and economic burdens to society.9 However, it is

sometimes challenging to identify cognitive impairment

early because its causes are complex.10–13 Although some

protein molecules found in cerebrospinal fluid, such as

tau protein and amyloid-b 42 filaments, have been exten-

sively studied as potential biological markers for early

diagnosis of AD14, their screening value in the general

population is severely restricted by their intrusiveness

and high cost.15 Therefore, finding more effective
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biomarkers is still essential for identifying early cognitive

decline.16

Neurofilaments (Nfs) are a class of cylindric proteins

found in the cytoplasm of neurons and are primarily

responsible for preserving the stability of the neuronal

structure. Neurofilament light chain (NfL), a subunit of

neurofilaments, is widely expressed in nerve axons. The

release of NfL dramatically rises when CNS axons are

damaged by inflammation, neurodegeneration, trauma, or

ischemia.17,18 Increased levels of NfL (cerebrospinal fluid

or blood) have been detected in a variety of neurological

diseases, according to previous studies.19 Given that NfL

levels naturally increase with age,20–22 it raises the ques-

tion of whether elevated NfL levels in the elderly popula-

tion remain associated with cognitive decline after

adjusting for age. It is worth exploring. While recent

research has provided some supportive evidence,23–26

other investigations have not found a significant correla-

tion between sNfL levels and specific cognitive test

scores,27,28 indicating that further research is needed to

clarify this relationship. Moreover, to the best of our

knowledge, there is currently a lack of studies examining

the correlation between sNfL and cognitive function in a

nationwide elderly population in the United States.

Therefore, in this cross-sectional study, we aimed to

explore the relationship between sNfL and cognitive

decline in an older US population (age ≥ 60 years) using

National Health and Nutrition Examination Survey

(NHANES) data.

Methods

Study population

The NHANES protocols were authorized by the National

Center for Health Statistics (NCHS) ethics review board

with the written informed permission of every participant.

Such analysis employing de-identified data that were not

in direct touch with participants was not regarded as a

human subjects study. It was not submitted to institu-

tional review board assessment by National Institutes of

Health regulation.29,30 Researchers all over the world can

utilize the NHANES database, which is a freely accessible

resource. Still, they must guarantee that their research is

in the public interest and abide by all applicable rules and

regulations before utilizing the information. For more

information, see https://www.cdc.gov/nchs/about/policy.

htm. This study followed the Guidelines for Strengthening

the Reporting of Observational Studies in Epidemiology

(STROBE).31

NHANES uses a complex, multistage probability sam-

pling design. As a result, there will be disparities in sam-

pling probability among individuals, necessitating the use

of sample weights to adjust the sampling results. As the

exposure variable we studied was the level of sNfL, it was

a component of the survey subsample. Therefore, we used

the weights of that subsample for our analysis. For more

details on sampling design and weight calculation, please

refer to https://www.cdc.gov/nchs/hus/sources-definitions/

nhanes.htm.

We employed weighted samples to produce estimates

accurately representing the American population, factor-

ing in the design’s stratification and clustering.32 Our data

source was NHANES from the 2013–2014 cycle, encom-

passing information related to the primary study variable,

sNfL, and cognitive tests. Additionally, we accessed pub-

licly available data about four cognitive tests conducted

on individuals aged 60 years and older, derived from par-

ticipants recruited from 2013 to 2014.33 Participants who

had not undergone any cognitive testing or those who

had but had not fully undergone all four cognitive tests

were eliminated (N = 268). Then, we excluded those sub-

jects (N = 1071) who skipped sNfL testing or did not

have results. Furthermore, we removed the data from the

analysis with missing covariates (N = 56) while account-

ing for the effects of the model fit adjustment for covari-

ates. Finally, we included 446 individuals in the research

(Fig. 1).

Measurement

Measurements of serum neurofilament light chain

Siemens Healthineers utilizes an innovative high-

throughput acridine ester (AE) immunoassay, integrated

into the Atellica platform, for measuring sNfL in the

NHANES database. Information regarding the develop-

ment and validation of this test kit can be found in previ-

ously published literature.34 This immunoassay is based

on direct AE chemiluminescence detection, employing

one antibody and solid-phase magnetic bead capture with

another antibody. Researchers have established that this

assay highly compares to the traditional single-molecule

array (Simoa; Quanterix) assay.34,35 Furthermore, other

pertinent research investigations36–38 have employed it.

First, sNfL antigen-conjugated acridinium-ester (AE)-

labeled antibodies are treated with serum samples. The

material is mixed with paramagnetic particles (PMP)

coated with a capture antibody to create an antigenic

complex containing the AE-labeled antibody and PMP.

Then, unbound AE-labeled antibodies are isolated and

eliminated, and then acids and bases are added to start

chemiluminescence and quantify light emission. A

completely automated Attelica immunoassay system is

used for every phase. On the NHANES website, thorough

guides for laboratory procedures are freely available.32
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Cognitive function assessment

The animal fluency test (AFT), the learning and recall of

words from the Creating a Registry for Alzheimer’s Dis-

ease (CERAD) exam, and the digit symbol substitution

test (DSST) were used to measure cognitive

performance.39 Researchers widely use these cognitive

tests in cognitive screening and clinical and epidemiologic

studies.40–48 Some research49–51 on elderly populations

has also utilized these four cognitive tests.

Total subjects in NHANES 2013-2014 (n=10175)

Individuals with age ≥ 60 (n=1841)

Individuals with age ≥ 60 and avilalble cogitive score  and sNfL data

(n=502)

Excluded age < 60 individuals (n=8334)

Individuals with age ≥ 60 and avilalble cogitive score data (n=1573)

Exluded cognitive score data missing (n=268)

Exluded sNfL data missing (n=1071)

Final participants  (n=446)

Exluded other relevant 

Covariates missing data (n=56):

Famliy income (n=38)

Education level (n=1)

BMI (n=5)

Smoking status (n=1)

Drinking (n=8)

Hypertension (n=2)

GHb (n=1)

Figure 1. Flow chart of the screening and enrollment of participants. BMI, body mass index, GHb, glycated hemoglobin; NHANES, National

Health and Nutrition Examination Survey; sNfL, serum neurofilament light.
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Absolute verbal fluency was assessed using the AFT.

Each participant was given a minute to respond with as

many animals as possible, with each response worth one

point.52 Three consecutive learning trials (immediate

recall test, IRT) and one delayed recall (delayed recall test,

DRT) comprise the CERAD test. Participants were

instructed to remember as many words from the study

experiment as possible after studying for the exam. Each

trial had a score range of 0 to 10, with 1 point awarded

for each accurate response. The IRT is composed of the

total scores of these three consecutive learning trials,

while the DRT is required after completing the two tests,

AFT and DSST (about 8–10 minutes after the start of the

word learning trial). The CERAD score is the sum of the

four tests.40 The Digit Symbol Substitution Test (DSST)

primarily measures processing speed, sustained attention,

and working memory.53 The task required using a paper

table with a key at the top that featured nine numbers

and symbols. The 133 boxes next to the numbers had 133

symbols, and participants had 2 minutes to replicate

them. The total number of exact matches determines the

score. The lower the score on each dimension of cognitive

function, the worse the mental process. Besides, according

to the NHANES website,54 the investigator independently

scored 10% of the forms a second time and compared

and reconciled the two scores as needed.

Covariates

Considering previous references, we gathered sociodemo-

graphic information (age, gender, race, education, and

family poverty income ratio (PIR)),55–57 body mass

index (BMI),58 lifestyle (work activity, recreational activity,

smoking status, and alcohol consumption status),59–62

medical history (hypertension, diabetes, stroke, coronary

artery disease (CHD), and congestive heart failure

(CHF),63–67 and laboratory data (total cholesterol (TC),

high-density lipoprotein (HDL), and glycated hemoglo-

bin (GHb))68,69 related to the cognitive function or sNfL

as confounding variables. Another study on factors

influencing sNfL levels within the NHANES database

confirmed that the mentioned variables affect sNfL.36

NHANES responses to survey questions about race and

Hispanics were used to obtain information about self-

reported race and ethnicity. Using NHANES, we catego-

rized the participants into four racial and ethnic groups:

Mexican Americans, non-Hispanic Black, non-Hispanic

White, and other races. There are three levels of educa-

tional attainment: below high school, high school, and

college graduate or greater. We classified household

income into the following three levels based on the

household PIR: low-income (≤1.3), moderate-income

(1.3–3.5), and high-income (>3.5) using data used by

US government agencies to report NHANES nutrition

and health data.70 BMI was calculated by dividing each

participant’s weight by their height’s square (kg/m2).

According to the activity intensity within a week, work

and recreational activities are divided into three levels:

vigorous, moderate, and none or low.71 Three categories

of smoking status were used: never smoked (or smoked

less than 100 cigarettes), past smokers (smoked at least

100 cigarettes but ceased smoking), and current smokers.

The survey question “Have you had at least 12 drinks of

any type of alcoholic beverage in any 1 year?” was

employed to assess people’s drinking status. Those who

responded “yes” were classified as drinkers. The question

“Have you been told by a doctor or health professional

that you have ___?” was used to address hypertension,

diabetes, stroke, CHD, and CHF. Participants’ blood

samples were sent to a remote lab for analysis and test-

ing for TC, HDL, and GHb.

Statistical analysis

We considered complex sampling designs and weights fol-

lowing the NHANES analysis guidelines.72 We used the

sNfL subsample 2-year weight (WTSSNH2Y) as the sam-

ple weight for the research because it is present in the

corresponding component of the NHANES.32 Means

(standard deviation, SD) for continuous variables and

percentage frequencies for categorical variables were used

to describe participant characteristics. T-tests (for contin-

uous variables) and chi-squared tests (for categorical vari-

ables) were used to compare baseline characteristics

between groups classified by ln(sNfL) quintiles. Specifi-

cally, because the sNfL levels were skewed, we trans-

formed them using a natural logarithm to ensure they

followed a normal distribution.

b and 95% CIs for the four cognitive tests with ln

(sNfL) levels were calculated using weighted linear regres-

sion models. We used both unadjusted and multivariate-

adjusted models to analyze the data separately. Without

making any covariate adjustments, Model 1 was the crude

model. Model 2 was modified to account for sociodemo-

graphic factors, work, and recreational activities. Model 3

is a fully adjusted model with all of the included covari-

ates. Furthermore, restricted cubic spline (RCS) regression

was carried out using four knots at the 5th, 35th, 65th,

and 95th percentiles of ln(sNfL) levels to test the non-

linear relationship between ln(sNfL) concentrations and

the four cognitive tests after adjusting all covariables in

Model 3. After that, we used weighted segmented linear

regression to conduct additional inflection point analyses.

We also used stratified analysis to investigate further the

association between ln(sNfL) and these tests in several

population subgroups, including age, gender, race,
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education level, family income, work activity, recreational

activity, BMI, hypertension, diabetes, smoking status, and

drinking subgroups. To test the robustness of our find-

ings, we removed participants from the sensitivity analysis

if their ln(sNfL) was less than 4.489 pg/mL (outliers were

identified using the box plot approach).

STATA version 16 (StataCorp LP, College Station,

Texas, USA), R software (version 4.2.1), and Free statisti-

cal software (version 1.7.1, FreeClinical Medical Technol-

ogy Co., Ltd, Beijing, China) were used for all analyses.

The threshold for statistical significance was a two-sided p

value of 0.05. In particular, to address the issue of multi-

ple comparisons in subgroup analysis, we implemented a

Bonferroni adjustment to the significance threshold. This

adjustment led to a more stringent entry aimed at con-

trolling the family-wise error rate. Please refer to the

attached materials for further information on the statisti-

cal analysis plan.

Results

Population characteristics

According to the quintiles of their ln(sNfL) levels,

Table 1 demonstrates the baseline characteristics of all

subjects. The individuals’ mean ages, BMI, TCs, HDLs,

GHbs, IRTs, DRTs, AFTs, and DSSTs were 66.31 (4.19)

years, 29.37 (6.98) kg/m2, 192.36 (42.25) mg/dL, 56.69

(17.70) mg/dL, 5.96 (1.04) %, 21.33 (4.05), 6.95 (2.06),

18.65 (5.66), and 54.03 (16.32), per the weighted analy-

sis. Men made up 47.73% of the participants, who were

essentially between the ages of 60 and 69 (73.86%) dur-

ing the period of the NHANES examination. The distri-

bution of the number of participants and levels of

continuous covariates remained consistent among cate-

gories except for age, TC, GHb, and the four cognitive

tests. Specifically, participants with ln(sNfL) levels in

the range of 3.08–3.48 pg/mL (in the fourth quintile)

were slightly older. In contrast, those with relatively

high TC and GHb levels exhibited ln(sNfL) values that

fell into the second (2.58–2.81 pg/mL) and fifth quin-

tiles (3.49–6.21 pg/mL), respectively. In addition, partic-

ipants with ln(sNfL) levels in the 2.58 to 2.81 pg/mL

(in the second quintile) performed relatively well on all

cognitive tests.

Association between sNfL levels and
cognitive function

Table 2 shows the outcomes of the multiple linear regres-

sion using sample weights. In Models 1–3, the levels of ln

(sNfL) and the four cognitive tests showed a negative

relationship. In the crude model, the bs (95% CIs) for

IRT, DRT, AFT, and DSST were �1.046 (�1.686 to

�0.405), �0.424 (�0.770 to �0.077), �2.014 (�3.778 to

�0.250), and �6.265 (�10.208 to �2.321). After adjust-

ing for all confounders, the corresponding effect sizes

(95% CIs) were �0.763 (�1.301 to �0.224), �0.308

(�0.576 to �0.04), �1.616 (�2.639 to �0.594), and

�2.790 (�4.369 to �1.21), respectively. Furthermore, we

employed RCS to model and visualize the relationship

between predicted ln(sNfL) and bs of the four cognitive

tests in Figure S1. After adjusting for all covariates,

there was a nonlinear relationship between ln(sNfL) and

DRT (p for nonlinearity = 0.002) and AFT (p for

nonlinearity = 0.024), respectively, with an inflection

point at approximately 2.7 pg/mL. In Table 3, segmented

linear regression analysis suggested a significant negative

correlation between ln(sNfL) and DRT (b (95% CI):-

0.543 (�1.059 to �0.027)) and AFT (b (95% CI): �1.748

(�3.003 to �0.493)) when ln(sNfL) level was greater than

2.7 pg/mL.

Stratified analysis

Figure S2 presents the result of the stratified analysis for

the fully adjusted model under sample-weighted investiga-

tion. Participants who engaged in no or little work (b
(95% CI): �1.117 (�2.026 to �0.208)) and moderate rec-

reational (b (95% CI): �1.519 (�2.561 to �0.477)) activ-

ity did not have diabetes (b (95% CI): �1.129 (�1.996 to

�0.262)) showed a negative connection between ln(sNfL)

and IRT. Only participants who did not have hyperten-

sion (b (95% CI): �0.946 (�1.756 to �0.136)) showed

this negative correlation for DRT. Non-Hispanic white (b
(95% CI): �1.684 (�2.85 to �0.518)) women (b (95%

CI): �2.326 (�3.537 to �1.114)) aged 60–69 years (b
(95% CI): �1.571 (�2.636 to �0.507)) with a college

education (b (95% CI): �2.176 (�3.471 to �0.881)),

overweight (b (95% CI): �3.224 (�4.619 to �1.829)), no

or little work (b (95% CI): �2.025 (�3.301 to �0.749)),

and recreational (b (95% CI): �1.955 (�3.428 to

�0.481)) activity, hypertension (b (95% CI): �2.056

(�3.231 to �0.881)) as well as no diabetes (b (95% CI):

�1.959 (�3.077 to �0.842)), frequently drank alcohol (b
(95% CI): �1.574 (�2.732 to �0.415)) turned to have

this negative association with AFT. Participants who were

at least 70 years old (b (95% CI): �5.282 (�9.857 to

�0.708)), overweight (b (95% CI): �4.282 (�8.076 to

�0.489)) with hypertension (b (95% CI): �4.374 (�7.353

to �1.395)), did not have diabetes (b (95% CI): �3.793

(�6.913 to �0.674)), showed this negative association

with the DSST. In addition, we discovered an inverse

interaction between diabetes and ln(sNfL) levels for IRT

(p for interaction = 0.021) and AFT (p for interaction =
0.037) (for details, see Tables S1–S4).
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Table 1. Characteristics of participants in the NHANES 2013–2014 cycles.

Characteristic

ln (sNfL), pg/mL

Total Q1 (1.96–2.57) Q2 (2.58–2.81) Q3 (2.82–3.07) Q4 (3.08–3.48) Q5 (3.49–6.21)

p-value446 89 85 94 88 90

Age (years), mean (SD) 66.31 (4.19) 64.52 (3.60) 66.04 (3.51) 66.06 (4.30) 68.19 (4.29) 66.76 (4.47) 0.001*

Age (years), n (%) 0.038*

60–69 315 (73.86) 78 (87.85) 66 (82.41) 67 (71.48) 47 (57.93) 57 (68.65)

≥70 131 (26.14) 11 (12.15) 19 (17.59) 27 (28.52) 41 (42.07) 33 (31.35)

Gender, n (%) 0.537

Male 208 (47.73) 43 (50.97) 32 (44.6) 43 (39.55) 44 (53.49) 46 (50.22)

Female 238 (52.27) 46 (49.03) 53 (55.4) 51 (60.45) 44 (46.51) 44 (49.78)

Race, n (%) 0.292

Mexican American 47 (3.81) 14 (5.55) 8 (3.09) 9 (3.73) 7 (3.1) 9 (3.64)

Non-Hispanic White 220 (78.9) 32 (73.9) 51 (86.59) 45 (77.24) 43 (75.79) 49 (80.03)

Non-Hispanic Black 88 (9.02) 19 (10.76) 8 (3.79) 21 (10.41) 19 (10.06) 21 (10.64)

Other race 91 (8.28) 24 (9.78) 18 (6.53) 19 (8.62) 19 (11.05) 11 (5.69)

Education level, n (%) 0.193

Below high school 98 (13.8) 18 (13.2) 18 (13.01) 18 (13.21) 25 (15.73) 19 (13.93)

High school 102 (20.24) 18 (11.1) 13 (15.21) 30 (34.31) 19 (20.25) 22 (21.13)

College educated 246 (65.96) 53 (75.7) 54 (71.78) 46 (52.48) 44 (64.02) 49 (64.93)

Family income, n (%) 0.213

Low income 129 (16.34) 23 (14.76) 22 (11.87) 27 (19.89) 27 (14.46) 30 (21.2)

Medium income 170 (37.62) 32 (28.16) 33 (39.7) 35 (31.14) 31 (41.1) 39 (47.48)

High income 147 (46.04) 34 (57.08) 30 (48.43) 32 (48.96) 30 (44.44) 21 (31.32)

Work activity, n (%) 0.507

Vigorous 58 (16.23) 10 (16.89) 15 (17.13) 12 (20.29) 7 (8.47) 14 (18.27)

Moderate 88 (20.4) 20 (25.77) 17 (19.95) 17 (21.26) 20 (23.59) 14 (11.65)

No or lower 300 (63.37) 59 (57.34) 53 (62.92) 65 (58.45) 61 (67.94) 62 (70.09)

Recreational activity, n (%) 0.143

Vigorous 67 (14.66) 12 (13.89) 17 (20.47) 14 (15.61) 9 (14.15) 15 (8.63)

Moderate 139 (31.56) 34 (42.52) 19 (23.25) 33 (39.23) 32 (31.94) 21 (22.09)

No or lower 240 (53.78) 43 (43.6) 49 (56.27) 47 (45.16) 47 (53.91) 54 (69.28)

BMI, kg/m2, mean (SD) 29.37 (6.98) 30.39 (7.46) 28.06 (4.99) 29.23 (6.45) 28.90 (8.72) 30.38 (6.76) 0.297

BMI, n (%) 0.069

Underweight 6 (1.75) 0 0 2 (1) 3 (7.61) 1 (0.35)

Normal 115 (25.84) 21 (24.78) 28 (33.16) 20 (22.91) 23 (27.04) 23 (20.54)

Overweight 159 (35.37) 32 (33.07) 30 (39.7) 38 (41.1) 32 (29.62) 27 (32.97)

Obese 166 (37.04) 36 (42.14) 27 (27.13) 34 (34.99) 30 (35.73) 39 (46.14)

Hypertension, n (%) 0.507

No 174 (44.93) 34 (43.81) 36 (45.68) 43 (54.53) 36 (45.34) 25 (35.55)

Yes 272 (55.07) 55 (56.19) 49 (54.32) 51 (45.47) 52 (54.66) 65 (64.45)

Diabetes, n (%) 0.052

No 349 (82.18) 75 (85.38) 75 (90.45) 73 (84.84) 62 (75.9) 64 (73.57)

Yes 97 (17.82) 14 (14.62) 10 (9.55) 21 (15.16) 26 (24.1) 26 (26.43)

Stroke, n (%) 0.584

No 422 (93.73) 88 (96.21) 79 (94.17) 90 (95.26) 80 (89.96) 85 (93.01)

Yes 24 (6.27) 1 (3.79) 6 (5.83) 4 (4.74) 8 (10.04) 5 (6.99)

CHF, n (%) 0.369

No 416 (93.1) 86 (93.35) 80 (95.3) 88 (96.02) 82 (94.03) 80 (86.71)

Yes 30 (6.9) 3 (6.65) 5 (4.7) 6 (3.98) 6 (5.97) 10 (13.29)

CHD, n (%) 0.114

No 407 (90.18) 83 (88.99) 84 (99.26) 82 (89) 79 (90.39) 79 (82.33)

Yes 39 (9.82) 6 (11.01) 1 (0.74) 12 (11) 9 (9.61) 11 (17.67)

Smoking status, n (%) 0.583

Never smoker 220 (49.41) 48 (52.08) 46 (53.2) 45 (47.4) 43 (51.46) 38 (42.58)

Former smoker 165 (39.79) 38 (45.15) 30 (37.4) 33 (41.21) 28 (33.36) 36 (42.04)

Current smoker 61 (10.8) 3 (2.78) 9 (9.4) 16 (11.38) 17 (15.18) 16 (15.38)

(Continued)

22 ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Serum NfL and cognition in US elderly X. Liu et al.



Sensitivity analyses

After excluding individuals with extreme ln(sNfL), there

was still a negative correlation between the serum neurofi-

lament light chain and most cognitive test scores. Ln

(sNfL) levels were still negatively associated with IRT (b
(95% CI): �0.894 (�1.76 to �0.027)), DRT (b (95% CI):

�0.476 (�0.921 to �0.031)), and AFT (b (95% CI):

�2.031 (�2.882 to �1.179)) in the fully adjusted model,

respectively, except for DSST (for details, see Table S5).

Discussion

This cross-sectional research involving an older US popu-

lation found a negative correlation between sNfL levels

and cognitive performance. Further analysis revealed a

nonlinear relationship between ln(sNfL) levels and DRT

and AFT, respectively, with an inflection point value of

around 2.7 pg/mL. Stratified analysis suggested that for

different kinds of cognitive tests, the negative correlation

between the levels of ln(sNfL) and them was reflected in

specific subgroups with various characteristics. Moreover,

for IRT and AFT, there was an inverse interaction

between diabetes and ln(sNfL).

Previous research has also found a negative correlation

between the levels of NfL and cognitive function. A scop-

ing review that included 37 original studies found that

higher levels of NfL (sample sources including serum,

plasma, or cerebrospinal fluid) were associated with

poorer cognitive performance in many neurological dis-

eases such as AD, Huntington’s disease, multiple sclerosis,

Parkinson’s disease, and traumatic brain injury.73 In

Table 1 Continued.

Characteristic

ln (sNfL), pg/mL

Total Q1 (1.96–2.57) Q2 (2.58–2.81) Q3 (2.82–3.07) Q4 (3.08–3.48) Q5 (3.49–6.21)

p-value446 89 85 94 88 90

Drinking, n (%) 0.628

No 132 (26.23) 29 (28.55) 21 (22.95) 30 (31.23) 24 (20.04) 28 (28.77)

Yes 314 (73.77) 60 (71.45) 64 (77.05) 64 (68.77) 64 (79.96) 62 (71.23)

TC, mg/dL, mean (SD) 192.36 (42.25) 199.22 (40.16) 200.39 (39.96) 188.28 (45.80) 184.76 (45.42) 188.20 (38.18) 0.021*

HDL, mg/dL, mean (SD) 56.69 (17.70) 55.43 (15.07) 56.84 (16.82) 57.99 (15.69) 57.85 (21.33) 55.34 (19.08) 0.693

GHb, %, mean (SD) 5.96 (1.04) 5.76 (0.62) 5.76 (0.84) 5.96 (0.67) 6.12 (1.22) 6.20 (1.52) 0.010*

IRT, mean (SD) 21.33 (4.05) 22.19 (3.12) 22.12 (3.76) 21.46 (3.91) 20.09 (4.78) 20.74 (4.18) 0.006*

DRT, mean (SD) 6.95 (2.06) 7.17 (1.97) 7.45 (1.68) 7.03 (2.32) 6.63 (2.16) 6.44 (2.01) 0.004*

AFT, mean (SD) 18.65 (5.66) 19.43 (5.27) 20.82 (6.05) 18.72 (5.58) 16.96 (5.72) 17.10 (4.68) 0.035*

DSST, mean (SD) 54.03 (16.32) 57.86 (14.33) 58.80 (17.26) 53.96 (15.57) 50.29 (15.35) 48.78 (16.61) 0.007*

Abbreviations: AFT, animal fluency test; BMI, body mass index; CHD, coronary heart disease; CHF, congestive heart failure; CI, confidence interval;

DRT, delayed recall test; DSST, digit symbol substitution test; GHb, glycated hemoglobin; HDL, high-density lipoprotein; IRT, immediate recall test;

NHANES, National Health and Nutrition Examination Survey; Q, quartiles; SD, standard deviation; sNfL, serum neurofilament light; TC, total

cholesterol.

*p < 0.05.

Table 2. Association between serum neurofilament light and four cognitive tests.

Cognitive tests

Model 1 Model 2 Model 3

b (95% CI) p-value b (95% CI) p-value b (95% CI) p-value

IRT �1.046 (�1.686 to �0.405) 0.003* �0.802 (�1.347 to �0.257) 0.007* �0.763 (�1.301 to �0.224) 0.009*

DRT �0.424 (�0.770 to �0.077) 0.020* �0.349 (�0.661 to �0.037) 0.031* �0.308 (�0.576 to �0.04) 0.027*

AFT �2.014 (�3.778 to �0.250) 0.028* �1.592 (�2.732 to �0.452) 0.009* �1.616 (�2.639 to �0.594) 0.004*

DSST �6.265 (�10.208 to �2.321) 0.004* �3.441 (�5.097 to �1.786) <0.001 �2.790 (�4.369 to �1.21) 0.002*

Model 1: Crude model. Model 2: Adjusted with age, gender, race, education level, family income, work activity, and recreational activity. Model

3: Adjusted with age, gender, race, education level, family income, work activity, recreational activity, BMI, hypertension, diabetes, congestive

heart failure, coronary heart disease, stroke, smoking status, drinking, glycated hemoglobin, total cholesterol, and high-density lipoprotein.

Abbreviations: AFT, animal fluency test; CI, confidence interval; DSST, digit symbol substitution test; IRT, immediate recall test; DRT, delayed

recall test.

*p < 0.05.
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another meta-analysis of biological markers for AD,

researchers found that the increase in cerebrospinal fluid

NfL was more pronounced in the AD group compared to

the control group (cognitively normal), with a combined

effect size (95% CI) of 2.35 (1.90–2.91).74 However, cere-

brospinal fluid collection is an invasive procedure75 and

is challenging to perform for screening in the general

population. Therefore, studying NfL levels in blood sam-

ples as a biological marker for diagnosing cognitive

decline has more excellent research value. A study con-

ducted on a population of Latino older adults21 found

that plasma NfL levels were negatively correlated with

neurodegeneration-related imaging biomarkers such as

“meta ROI” (b = �0.023, p = 0.014), mean thickness of

the temporal subregion (b = �0.022, p = 0.009), mean

thickness of the middle temporal gyrus (b = �0.033,

p < 0.001), and mean thickness of the cingulate gyrus

(b = �0.017, p = 0.040) while being positively correlated

with overall brain amyloid load (b = 0.004, p = 0.02).

Additionally, in a cohort study involving 625 middle-

aged participants, Beydoun et al. found that baseline

plasma NfL levels were associated with rapid cognitive

decline in White individuals or those over 50 years old,

and the rate of plasma NfL increase was related to a rapid

decline in verbal fluency in males.76 Another longitudinal

study in AD patients found a significant correlation

between dynamic changes in serum NfL and cognitive

decline, and compared to cross-sectional analysis, this

change could identify patients carrying AD genes a decade

earlier. However, due to sample size and time limitations,

the study cannot yet be applied to clinical predictions.77

Another cohort study involving 335 normal individuals

revealed a negative correlation between the annual

changes in mini-mental state examination (MMSE) scores

over time and initial serum NfL levels (rs = �0.273,

p < 0.01).78

Furthermore, another cohort study found that the high

sNfL group had a higher risk of substantial cognitive

impairment change (i.e., transitioning from normal to mild

cognitive impairment (MCI) or from MCI to dementia)

(log-rank test p < 0.001). Elevated sNfL levels in the MCI

population served as an independent predictor of signifi-

cant cognitive impairment change (multivariable Cox

regression model analysis: HR [95% CI] 13.640 [1.346–
138.270]).24 Our research confirms the above study’s find-

ing that a negative correlation exists between ln(sNfL)

levels and cognition. Moreover, the data utilized in our

study used a complex sampling method to represent the

US elderly population for correlation analysis, enhancing

its generalizability. In addition, few studies have analyzed

the dose–response relationship between sNfL levels and

cognitive decline. Our study, based on RCS regression,

found a nonlinear relationship between ln(sNfL) levels and

DRT and AFT. Only when ln(sNfL) levels were greater than

or equal to 2.7 pg/mL did DRT and AFT scores signifi-

cantly decrease with increasing ln(sNfL) levels. This analy-

sis suggests that sNfL, a central nervous system damage

biomarker, demonstrates a threshold effect in its relation-

ship with DRT and AFT. Nevertheless, it is worth noting

that the context of the other two cognitive tests did not

observe such a nonlinear relationship. Therefore, addi-

tional research is warranted to determine whether this

inflection point value holds diagnostic significance.

In addition, our stratified analysis results showed that

sNfL levels were only associated with cognitive function in

subgroups of individuals with specific characteristics by

different cognitive tests. To our knowledge, few previous

research addressed this issue. A study involving 503 non-

Hispanic White and 357 Mexican American participants

found that plasma NfL levels were associated with poorer

verbal fluency (AFT scores) in non-Hispanic Whites,

regardless of cognitive impairment,79 consistent with our

findings. However, in another study, Beydoun et al. found

that the rate of the annual increase in plasma NfL levels

was associated with a decline in verbal fluency in males.

Among participants with higher economic status, the speed

of the yearly rise in plasma NfL levels was associated with a

slower loss in verbal fluency.76 Nevertheless, it is worth

noting that the participants in that study were middle-aged

individuals with an average age range of 30–66 years.

Furthermore, our study also revealed an inverse interac-

tion between sNfL levels and diabetes in the IRT and AFT

tests, suggesting a possible positive association between

them. And a few previous studies reported similar findings.

Ciardullo et al. found that diabetes patients had higher

sNfL levels than nondiabetic participants in each age

Table 3. Segmented linear regression analysis of the relationship

between serum neurofilament light and cognitive performance.

Cognitive tests

Model 3

b (95% CI) p-value

DRT

ln(sNfL) < 2.7 pg/mL 1.377 (�1.521 to 4.274) 0.351

ln(sNfL) ≥2.7 pg/mL �0.543 (�1.059 to �0.027) 0.039*

AFT

ln(sNfL) < 2.7 pg/mL 3.671 (�3.073 to 10.415) 0.285

ln(sNfL) ≥2.7 pg/mL �1.748 (�3.003 to �0.493) 0.006*

Model 3: Adjusted with age, gender, race, education level, family

income, work activity, recreational activity, BMI, hypertension, diabe-

tes, congestive heart failure, coronary heart disease, stroke, smoking

status, drinking, glycated hemoglobin, total cholesterol, and high-

density lipoprotein.

Abbreviations: AFT, animal fluency test; CI, confidence interval; DRT,

delayed recall test.

*p < 0.05.
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group, and multivariable linear regression suggested a posi-

tive relationship between ln(sNfL) levels and diabetes.37

Additionally, Thota et al. found that plasma NfL levels were

higher in individuals with Type 2 diabetes and prediabetes

than in those with normal blood glucose levels.80 Further-

more, Fitzgerald et al.’s study36 also identified a significant

correlation between diabetes and elevated sNfL levels.

Although the biological mechanisms underlying the

relationship between elevated sNfL levels and cognitive

decline are not yet fully understood, we can speculate that

the following reasons may contribute to this association

based on existing evidence. First, as a structural protein

widely distributed in neuronal axons, Neurofilaments are

primarily involved in maintaining the stability of the

cytoskeleton.81,82 Among the four subunits of Neurofila-

ments, NfL is the most abundant and soluble, making it

the most easily detectable subunit of Neurofilaments.83

When axonal damage occurs, NfL is released into the

extracellular fluid and can be detected in cerebrospinal

fluid or peripheral blood.84 Theoretically, any disease that

causes neuronal and axonal damage (including neurode-

generative diseases like AD) significantly increases NfL

levels.85 Second, studies have shown that the integrity of

axons plays a crucial role in maintaining cognitive

function.86 Similarly, axonal degeneration is an essential

feature of neurodegenerative diseases and an important

factor contributing to cognitive impairment.87,88 There-

fore, neurodegenerative diseases are often associated with

elevated peripheral blood NfL levels.89,90 In addition, two

genetic studies have found significant associations

between specific single-nucleotide polymorphisms related

to the high risk of AD and increased NfL levels,91,92 sug-

gesting that NfL may be involved in cognitive impairment

through genetic mechanisms. However, to elucidate the

relationship between sNfL and cognitive function, further

basic experiments and clinically rigorous studies with high

levels of evidence are needed for exploration.

Nevertheless, our study has some limitations. First,

despite controlling for confounding factors through vari-

ous methods, such as multivariable regression and strati-

fied analysis, we could not eliminate residual confounding

effects from unmeasured factors. Unmeasured confound-

ing factors could introduce bias into the correlation anal-

ysis between sNfL and cognitive tests. Nonetheless, we

have diligently eliminated known major confounding fac-

tors through a comprehensive literature review,55–69

ensuring the reliability of our analytical results. Second,

although our study utilized a thorough assessment of cog-

nitive function through four representative tests, caution

should be exercised when interpreting effect sizes, as there

is currently a lack of standard gold quantification for

defining cognitive impairment. Cognitive test scores cap-

ture only certain aspects of cognitive performance

excellence.49,93 In the future, we plan to conduct relevant

analyses using techniques that facilitate a more compre-

hensive assessment of cognitive functioning, potentially

enhancing our ability to gauge clinical relevance. Third,

due to the inherent nature of cross-sectional studies, we

cannot make causal inferences regarding the relationship

between sNfL levels and cognitive function. To further

establish this association, future longitudinal research is

required. Lastly, despite NHANES employing a complex

multi-stage probability sampling method to reduce popu-

lation selection bias, our study utilized a relatively small

unweighted sample size. Consequently, caution should be

taken while interpreting the findings, particularly regard-

ing population representativeness and analysis outcomes

within specific subgroups with limited sample sizes. If

new cycle-related data become available in the database,

we intend to incorporate and combine it in future

research to enhance its representativeness.

In summary, our study found a negative association

between ln(sNfL) levels and cognitive function in the

overall elderly population in the United States, with a

nonlinear relationship observed in delayed memory and

language fluency tests. This finding suggests that sNfL

may serve as a potential biological marker for monitoring

cognitive decline and enabling early intervention in high-

risk populations at risk of developing AD. These results

will need to be confirmed by more longitudinal research.
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